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Abstract

We study the predictability of online speech on social media, and whether predictability
improves with information outside a user’s own posts. Recent work suggests that the predictive
information contained in posts written by a user’s peers can surpass that of the user’s own
posts. Motivated by the success of large language models, we empirically test this hypothesis.
We define unpredictability as a measure of the model’s uncertainty, i.e., its negative log-
likelihood on future tokens given context. As the basis of our study, we collect a corpus of
6.25M posts from more than five thousand X (previously Twitter) users and their peers. Across
three large language models ranging in size from 1 billion to 7o billion parameters, we find that
predicting a user’s posts from their peers’ posts performs poorly. Moreover, the value of the
user’s own posts for prediction is consistently higher than that of their peers’. Across the board,
we find that the predictability of social media posts remains low, comparable to predicting
financial news without context. We extend our investigation with a detailed analysis about the
causes of unpredictability and the robustness of our findings. Specifically, we observe that a
significant amount of predictive uncertainty comes from hashtags and @-mentions. Moreover,
our results replicate if instead of prompting the model with additional context, we finetune on
additional context.

1 Introduction

Prediction is of fundamental importance for social research Salganik (2019); Salganik et al. (2020).
The predictability of different social variables can provide a scientific window on a diverse set of
topics, such as, emotion contagion Kramer et al. (2014) and social influence Bagrow et al. (2019);
Cristali and Veitch (2022); Qiu et al. (2018), privacy concerns Garcia (2017); Garcia et al. (2018); Li
et al. (2012); Jurgens et al. (2017), the behavior of individuals and groups Tyshchuk and Wallace
(2018); Nwala et al. (2023), the heterogeneity of networks Colleoni et al. (2014); Aiello et al. (2012),
information diffusion Chen et al. (2019); Weng et al. (2014); Bourigault et al. (2014); Guille and
Hacid (2012) and more. Of particular importance for the study of digital platforms is the case of
online speech. Studies about the predictability of text, however, have long been limited by the
weaknesses of available language models.

We revisit the problem of predicting online speech in light of dramatic advances language
modeling. We focus on the central question: How predictable is our online speech using large
language models? Such predictive capabilities could inform research on substantial risks — such as
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Figure 1: Predictability of a user’s tweets using LLMs. Bits per character (BPC) measures, on average, how
many bits are required to predict the next character. Predictability improves with additional context to the
model: (i) past user tweets (user context, Fig. 1b) (ii) past tweets from the user’s peers (peer context) and
(iii) past tweets from random users (control). We plot the average BPC over users in Fig. 1c. Most of the
predictive information is found in the user context, followed by peer and random context. Our results
are robust across models with different parameter sizes and tokenizers.

user profiling, impersonation and exerting influence on real users Carroll et al. (2023); Weidinger
et al. (2021). Inspired by work exploring the possibility of user profiling Bagrow et al. (2019),
we explore the question of predicting user speech from their peers. We ask the following: How
predictable is a social media post given posts from the author’s peers? We contrast the answer
with how predictable social media posts are from the authors” own posts. Through an experiment
spanning millions of tweets and thousands of subjects, our study provides a detailed picture of
the current state of predicting online speech.

1.1 Contributions

We investigate the predictability of online speech on the social media platform X (Twitter) using
a corpus of 6.25M posts (tweets) of 5000 subjects and their peers. We use three large language
models of increasing size, GPT-2-XL-1.5B, Falcon-40B, and Llama-2-70B. We use these models to
estimate the predictability of our subjects’” posts under various settings.

Predictability improves significantly with model size, as expected. However, even the best
model performs poorly without additional context. For illustration, most users” posts are less
predictable than financial news. We therefore test how much prediction benefits from three
additional sources of context, specifically:

1. posts from randomly selected users (random context),
2. posts from the user’s peers (peer context),

3. posts from the user themselves (user context).



Contrary to what prior work suggested Bagrow et al. (2019), our findings on state-of-the-art
language models suggest that a user’s own posts have significantly more predictive information
than posts from their close social ties. Prediction benefits most from user context, followed by
peer context, in turn followed by random context. We find that all of them improve predictability
significantly, with a large effect size. Our prompting experiments in Figure 1 illustrate these
findings.

To understand the sources of unpredictability, we further investigate the locations of greatest
uncertainty within a post. We find that @-mentions and hashtags are typically the points of
greatest uncertainty within a post. Consequently, removing both generally improves predictability
across the board. The relative comparisons, however, stay unchanged.

Large language models can be sensitive to prompting strategies. To test the robustness of our
findings, we replace prompting with fine-tuning. Specifically, instead of prompting GPT-2-XL
with a specific source of context, we fine-tune the model on the same source of context. We find
that the relative comparisons between user, peer, and random context, remain the same.

To summarize, the extent to which we can predict online speech is limited even with state-of-
the-art language models. Our observations do not suggest that peers exert an outsize influence
on an individual’s online posts. Concerns that large language models have made our individual
expression predictable are not supported by our findings.

2 Related work

Modeling online speech Understanding and modeling language usage on social media Bashlovk-
ina et al. (2023); Kern et al. (2016); Schwartz et al. (2013) has become of particular interest to the
research community, where Twitter is one of the most studied social media platforms Zhang
et al. (2023); Qudar and Mago (2020). The most common method is using large language models
(LLMs), where they finetune on social-media data and evaluate models on specific downstream
tasks such as sentiment analysis, hate speech detection, etc. Zhang et al. (2023); Bashlovkina et al.
(2023); Qudar and Mago (2020) We are interested in a more general notion of predictability — in
particular, the predictability of individual users” online speech. Following common practice in
natural language processing, we take model uncertainty as a measure of how hard it is for the
model to predict some text.

Prediction based on neighbors Predicting attributes of a node from its neighbors is a well-
known paradigm in machine learning. In the context of social networks however, it often has
problematic implications on privacy since it limits the user’s ability to control what can be inferred
about them Garcia (2017); Garcia et al. (2018); Li et al. (2012). Work on the feasibility of "shadow
profiles" (predicting attributes of non-users from platform users) have introduced a notion of
privacy that is collective Garcia (2017); Garcia et al. (2018). Prediction of sensitive attributes of the
user such as age, gender, religion etc. is possible from their peers Jurgens et al. (2017).

Bagrow et al. (2019) go beyond predicting sensitive attributes and look at the predictability of
users’ online speech. They investigate the theoretical possibility of peer-based user profiling on
Twitter. They look at the information content of tweets using a non-parametric estimator, and
derive an upper bound on predictability which shows that 8-9 peers suffice to match the predictive
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Figure 2: Our data collection process can be divided into two stages. In the first stage (Fig. 2a), we collected
10M tweets in early 2023 which served as our base for sampling subjects. In the second stage (Fig. 2b), we
collected users” timelines. First, we collected timelines of subjects. Based on those, we determined which
users they had most frequently mentioned (their “peers”). We selected the top-15 most mentioned peers
and 15 random users per subject, and collected their timelines too.

information contained in the user’s own posts. This upper bound on predictability implies that
there could exist some predictor which is capable of peer-based user profiling. Our work aims
to contextualize their results by empirically testing this hypothesis on concrete predictors. We
use transformer-based LLMs, which are currently considered to be the state-of-the-art method for
language modeling.

3 Experimental setup

We consider a similar experimental setup as Bagrow et al. (2019), but with recent large language
models and 15 peers per subject. We define predictability (or rather unpredictability) as a measure
of the model’s uncertainty, i.e., its negative log-likelihood, on a specific user’s tweets conditional
on given context. We collected tweets from a sample of ~5k subjects. We experiment with three
types of contexts: (i) past tweets from the user (or “user context” - Fig. 1b), (ii) past tweets from
the user’s social circle (“peer context”) and finally (iii) past tweets from a control group (“control”
or “random context”).

We start by describing our data collection process (Section 3.1) and what models we used
(Section 3.2). Then, we go into detail about the implementation of our prompting and finetuning
experiments (in Section 3.3 and 3.4, respectively).

3.1 Data Collection

The data collection process consisted of two main stages: an initial sampling period where we
recorded real-time Twitter activity for a month in early 2023 and a second stage where we collected
the timelines of sampled users. For a high-level overview of the data collection process, see Figure
2. We collected tweets from three groups of users:

1. subjects, approximately 5,000 randomly sampled Twitter users,



2. peers of subjects, which we take to be the top 15 people that each subject most frequently
mentions,

3. random users for control purposes.

Throughout our data collection, we only collected tweets that were written by the user who posted
them (e.g. no retweets) and were classified as English according to Twitter’s own classification
algorithm.

3.1.1 Sampling stage

Sampling was done by collecting a pool of tweets whose authors would serve as our base for
picking our subjects. We collected them using the Twitter Firehose API; which allowed us to collect
a 1% sub-sample of real-time tweet activity. This collection period lasted roughly 30 days and
was done in early 2023 (from 20. January to 10. February), during which we collected 10M tweets
(with ~5M unique authors). We sampled N = 5102 subjects from this pool (0.1% of authors) for
our experiments. Twitter had roughly ~500M active monthly users in 2023 Yaccarino (2023) —
some of which may have been bot accounts Lee et al. (2011). To address this issue, we decided
to filter out accounts that scored high (above 0.5 on a scale of o to 1) on the Bot-O-Meter bot
detection API Sayyadiharikandeh et al. (2020). Additionally, we also filtered out users that had a
high retweet ratio, where > 80% of their feed consisted of retweets. This ensured the selection of
users who had a sufficient amount of self-authored tweets for our dataset.

3.1.2 Timeline collection stage

For each subject, we collected a total of 500 tweets T, = 7,2/ U 7,'*¢" from their timelines. Half
of those tweets were used for estimating predictability 7,62, while the other half 7,'s¢" served
as context. Some tweets in 7, date back as early as 2011, however the vast majority (95%) were
authored after 2022. Collected tweets were authored no later than the start of our sampling stage
(20. January 2023).

Besides user context, we also introduce “peer” and “random” context: 77" and 7,/2"%" again

with 250 tweets each. We selected the 250 most recent tweets from a pool of 15 users’ timelines.
Peers were the top-15 users who were most frequently mentioned by a subject. Random users
were sampled from a total of ~gok timelines that we had queried in this stage. We always made
sure that context tweets were authored before the oldest tweet inside ’7;9"31. In total, we collected
approximately 6.25M tweets for our experients.

Similarly to Bagrow et al. (2019), we created a second control group (temporal control). However,
because of the similarity of the results, we only report results on the random control group
(social control) in the main text. For results including the temporal control, please see Appendix
B.4. For more detailed information on the dataset and how it was collected, we refer the reader
to Appendix A.1. There we go into detail on what filters we used to achieve a high-quality,
representative dataset of English tweets and share some statistics about our subject pool.



3.2 Models

We selected three large language models for our experiments: GPT-2-XL with 1.5B parameters
Radford et al. (2019), Falcon with 40B parameters Almazrouei et al. (2023) and Llama-2 with 70B
parameters Touvron et al. (2023). They represent models that share a similar transformer-based
architecture that have recently become popular due to their generative capabilities. However,
they differ in parameter size (1.5B, 40B and 70B parameters, respectively), training corpus and
tokenizers. We considered using GPT-3 and GPT-4, however the OpenAl API unfortunately does
not allow access to log probabilities for all tokens (which is necessary for our analysis), only to
the top-5. We used Huggingface’s transformers library Wolf et al. (2020) to load the models and
run our experiments. For the prompting experiments, we loaded the larger models using 8-bit
precision (which has little to no impact on performance Dettmers et al. (2022)) so that they could
fit on 2 A-100 80GB GPUs. We only use GPT-2-XL for our finetuning experiments.

3.3 Prompting Experiments

Our first approach to measuring model uncertainty is through prompting; that is, experiments
where we feed a tweet to a model and observe the associated probabilities of outputting that exact
tweet. It is important to note that this approach does not involve content generation. This allows
us to avoid a host of additional modeling choices, making prompting a more robust method. We
use negative log-likelihood (or NLL) as a measure of model uncertainty, and introduce bits per
character (or BPC) to enable comparisons across models. Reported results are calculated on 7,82,

Let us denote a single tweet as T = (11, tp, ...t,s ), where ¢; is a single token (i = 0...m). A token is
an item in the LLM’s vocabulary, and can be thought of as a collection of characters that frequently
co-occur. Each tweet has a maximum of 280 characters’ and after tokenization most tweets have
between o-100 tokens (Fig. 14 in Appendix). We use a language model with parameters 6 to
predict token t; based on the preceding tokens t_;. The model’s output will be a likelihood over
all possible tokens in the model’s vocabulary, however we are only interested in the conditional
probability of t;: pg(ti|t<;).

3.3.1 Calculating negative log-likelihood

Our metric for predictability is the average negative log-likelihood (or NLL for short from now
on). We define the NLL of a tweet T in the following way: L(T) = — ¥, cr In pg(t;|t~;). This gives
us an estimate of the model’s uncertainty when predicting the tokens inside tweet T. The average
uncertainty over all tweets in the evaluation set 7,8 is
- 1
Lu=- Y. L(Ty),
T/.E'];eval

where 7 is the total number of tokens. We additionally introduce notation to distinguish what
context was used to calculate: L, where subscript ¢ € {user, peer, random}. Here, the conditional
probability of token t; is based on preceding tokens f.; as well as tokens from the appropriate
context: pg(t;|7T,,t<i). The added context lends a convenient cross-entropy like interpretation of
the shared information between the context and evaluation tweets we are trying to predict. Tweets

'This limit changed to 4000 characters on the 09. February 2023.



that served as context were concatenated using the ‘newline” token for GPT-2-XL and the ‘space’
token for the two bigger models (they had no standalone ‘newline” token like GPT-2). We used
the maximum input sequence length available for each model (1024 tokens for GPT-2-XL, 2048 for
Falcon 40B and 4096 for Llama-2) to calculate the token probabilities. In case the provided context
exceeded this length, the oldest tweets were discarded.

3.3.2 Conversion to bits per character

Models with different tokenizers produce NLLs that are not commensurate with each other due
to a different set of tokens being used. To overcome this, we convert our measure to a metric
called bits per character, also known as bits per byte. Let c; be the number of characters in token ¢.
We define the number of characters inside tweet T as C(T) = Y <t ¢1,. Taking the average over all

tokens in T, we get C;, = %ZT,EE C(T;). We define bits per character (BPC) formally as

1
bpcu—Lu-C_—u-lnz.
This number tells us the average number of bits required to predict the next character in the
set 7,2"2'. This leads to a more interpretable variant of the common perplexity measure 2. The
average BPC over all users is bpc = \?}7\ Yueu bpc,. Similarly to before, we define bipcc as the
measure of model uncertainty where token probabilities were calculated including tokens from
some context c.

3.3.3 Estimating the effect size of context on predictability

Next, we are interested in measuring the average effect size of different contexts on predictability.
At a user level, we quantify the difference in predictability between context c1 and ¢2 as A% (u) =
Li! — L2, Aggregating over all users, we define the standardized mean difference (SMD) of A%}
for each context pair:

Hag

SMD(AG) =

( c2) UAE%

This gives us a unit-free quantity to estimate the effect size. Following established practice Cohen

(1988), we characterize effect sizes up to 0.2¢ to be small, up to 0.8¢ to be medium and and
anything above that to be a large effect size.

3.4 Finetuning Experiments

In this section we present a second method for estimating predictability, which has two advantages
over our previous prompting approach. First, we can fit the entire context into the model compared
to prompting where the maximum size of the input sequence was a limitation. Second, it bypasses
a common ailment of LLMs: their sensitivity to prompting strategy. However, finetuning can also
be very expensive—which is why we decided to limit our experiments to GPT-2-XL only.

Tweets were concatenated (with the special eos token ’<|endoftext|>" serving as a separator
between them) then divided into chunks of 1024 tokens so that they fit into the model. Here,

?Perplexity is the exponentiated average negative log-likelihood.



our proxy for unpredictability was the negative log-likelihood (or also commonly known as the
cross-entropy loss) in the final round of fine-tuning. Reported results are calculated on 7,8'2.

Our finetuning experiments had two stages. In the first pre-finetuning stage, we trained on a
large set of tweets to condition the model to learn basic Twitter syntax and common vocabulary.
This later helped us learn user related features much more efficiently in the second stage. After
pre-finetuning, we additionally finetuned on one of the contexts. We also experimented with using
mixtures of different contexts. We used the example finetuning script from the transformers library
as our base3, where we kept most of the default training arguments. Some finetuning choices
were inspired by an open-source project called HuggingTweets Dayama (2022).

3.4.1 Pre-finetuning on 10M tweets

We finetuned GPT-2-XL on the 10M tweets we collected during the sampling stage of our data
collection process (as described Section 3.1), where a 5% split was reserved for validation. We
finetuned all parameters for 1 epoch, using a constant learning rate of 5e—5, batch size 8 and fp16
mixed precision training on a single A-100 80GB GPU. More details on the pre-finetuning and
loss curves can be found in Appendix C.1.

3.4.2 Finetuning on context

Starting from the pre-finetuned model, for each user we finetuned a model on 7, for each
¢ € {user,peer, random}. That is three separate models per subject, resulting in a total of ~15k
finetuned models. We finetuned for 5 epochs with constant learning rate le—5 and batch size 1.
We tracked the cross-entropy loss on 7,¢2! periodically.

We also include experiments on finetuning on a mixture of contexts (eg. peer+random containing
tweets from both 7,7°*" and 7,/2"%°"). We combined them by sampling an equal amount of tweets
uniformly from each context, while keeping the total number of tweets the same (250 tweets) to
enable a fair comparison. Again, the base model was our pre-finetuned model, and we finetuned
for 5 epochs with constant learning rate 1e—5 and batch size 1.

4 Results

We divide the presentation of our main findings into three parts, one about the unpredictability of
posts in general (Section 4.1), one about predicting from different sources of context (Section 4.2),
and one about our investigation into the sources of unpredictability (Section 4.3).

4.1 Unpredictability of Posts

As described in Section 3.3, we used negative log-likelihood as a measure of the model’s uncertainty
when predicting a user’s tweets. In Figure 3 we present the distribution of the average NLL of
our subjects. To gain an intuition on how hard it is to predict our subjects” tweets relative to
other accounts, we included three popular financial news accounts as comparison: YahooFinance,

3run_clm.py from here: https://github.com/huggingface/transformers/tree/main/examples/pytorch/
language-modeling


https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling
https://github.com/huggingface/transformers/tree/main/examples/pytorch/language-modeling

2009 ---- u=4.88

— YahooFinance
1 —— CNBC
Stocktwits

3 4 5 6
Unpredictability (Avg. NLL, L)

Figure 3: Distribution of the average NLL of our subjects (with no additional context). As comparison
we include the average NLL of three financial news accounts: YahooFinance, CNBC and Stocktwits.
Colloquially financial news are hard to predict, therefore most of our subjects are too. Model: GPT-2-XL.

CNBC, and Stocktwits. Intuitively, predicting financial news and the stock market is hard Johnson
et al. (2003), which should make them less predictable. However, Figure 3 reveals that most
subjects in our pool are actually harder to predict than those news accounts. Of course, while the
content of those tweets may be hard to predict, their style and vocabulary may not.

We find that the ranking of users according to average unpredictability of their tweets is
strongly correlated between all three of our models (Figure 4). This means that a user who scores
high (i.e. their tweets are harder to predict) according to one model, will likely score high on
a different model as well. This points to a certain robustness of the negative log-likelihoods:
Although the absolute numbers change from one model to the next, the ranking of users is similar.

Finally, the absolute information content of users’ tweets (without additional context) is between
1.5-2 bits per character, depending on which model we use (see 'no context” bars in Figure 1c).
As a comparison, Shannon’s upper bound on the cross-entropy of the English language is 1.3
bits per character Shannon (1951), and recent estimates using neural language models say it is as
low as 1.12 bits Takahashi and Tanaka-Ishii (2018). Only our largest model with additional user
context achieves comparable entropy, with an average of 1.1193 bits per character (Llama-2 with
user context). These results suggest that individual pieces of our online expression taken out of
context are far from predictable using today’s LLMs.

4.2 Predicting Posts from Context

We quantified how additional context influenced predictability. We used two methods of feed-
ing additional information to our model, with complementary strengths and weaknesses: one
prompting based approach and one finetuning based approach.

We start with the results of the prompting approach. In Figure 1, we plot the average BPC
calculated over all of our subjects for three different models with varying parameter sizes. The
no context case was consistently the most unpredictable with highest BPC. Depending on what
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Figure 5: Average loss curves with standard error for finetuning experiments on GPT-2-XL. For each subject
(N = 5102) we finetune on the specified context, and compute the loss (negative log-likelihood) on 7,¢Vat.
The plotted averages are computed over the loss curves of 1000 subjects.
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Figure 6: Effect size matrix on Llama-2. We plot the average effect size of ¢, relative to c¢; on user
predictability. This is done by looking at the difference in predictability for each user AZQ (u) = L¢! — L2,
where L, is the average negative log-likelihood of user u under context c. Plotted values are standardized
mean differences (SMD) of AE% Darker green means greater improvement in prediction.

context was included, the amount of improvement varied. We show that most of the predictive
information is found in the user context, followed by peer and random context. This trend is
consistent across all three of our models.

As part of our prompting experiments, we were also interested in quantifying the effect size
each context had on predictability. We plot this for each context pair in Figure 6 on Llama-2.
This effect size matrix illustrates our finding that all types of context have a large effect size
(> 2.50) over having no context at all (last column). It also allows us to quantify the effect size
of our main finding: user context offers 1.8¢ improvement over peer context — an even bigger
improvement than what peer context offers over random context (1.3¢). While these effect sizes
are most pronounced on Llama-2, we found that these results also translate to the other models as
well (Figure 17 in Appendix).

Our main finding was replicated in our finetuning experiments as well. Figure 5a shows the
average loss curves (computed over 1000 subjects) for finetuning GPT-2-XL on different types of
contexts. Again, for all three contexts the loss goes down significantly. However, the final loss
they converge to is different, with large gaps between each. If we order contexts based on the
achieved loss in the final round, we get the same order as before: user context is best, followed by
peer context, then by the random control context. Bagrow et al. (2019)’s findings suggest that with
enough peers, one can match the predictive information inside the user context (using 8-9 peers).
However even with 15 peers per subject, we find no evidence of such peer-based user profiling.

We established that user context always outperfors peer context, regardless of model choice
or experimental method. Still, one might argue that by combining user and peer context, one
might achieve even higher predictability than by using user context alone. This could suggest
that there is some non-overlapping predictive information inside the peer context wrt. the user
context. We test this hypothesis by finetuning on a mixture of contexts (Fig. 5b) to give us an
idea which contexts shared common information. Combining peer+random contexts resulted in
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Figure 7: Average improvement in NLL from additional user context (compared to none). The first few
tokens of a tweet benefit most from the additional context. Model: Llama-2. We plot up to 100. token,
because the vast majority of tweets have < 100 tokens (Fig 13 in Appendix).

a linear interpolation of the final losses of finetuning on either context. In other words, mixing
random and peer context outperformed the final loss of finetuning exclusively on random context
by a large margin. Here, we found evidence of additional predictive information in the peer
context, which was not contained in the random context. However, mixing peer+user contexts
did not result in a significantly lower final loss. This suggests that there is a significant overlap in
predictive information between peer and user context.

A final, clarifying note on the "jumps" in the loss curves: Since each 7,0 contains 250 tweets
of varying lengths, 5 epochs of training resulted in different global steps for each user-context
combination. This explains the irregularities around global steps 15, 20, ... etc. since for some
users we only have losses up to that global step.

4.3 What Drives Unpredictability

Finally, we were curious where and how context improved predictability. Perhaps a mildly
surprising observation we can make based on Figure 1 is that random context also improves
predictability in a non-negligible way. Due to the randomized nature of the control group there
should be very little connection to our subjects’ tweets semantically. However the improvement
we observed can be explained by added information regarding the syntax of a tweet — how long
it is, the presence of @-mentions and hashtags, etc. Indeed this turns out to be the case: with
random context, the predictability of the @ token improved the most compared all other tokens —
see Appendix Table 1.

Even more surprisingly, predicting @-mentions and hashtags correctly played a significant
role even in the case of user and peer context. Visualizing the improvement in predictability
over individual tokens inside a tweet we noticed an interesting phenomenon (Figure 7). The

12



2.0 Il no context
. I random (control)
O I peer context
2 1.8 P
24l user context
2
<16
>
=
=
£ 1.44
=
kel
g
o 1.24
c
=]

1.0

gpt2-xI falcon Llama-2
(1.5B) (40B) (70B)

Figure 8: Rerunning our experiments without @-mentions and hashtags results in these changed predictabil-
ities. Subjects become more predictable on average, and the positive effect of context on predictability
decreases. For Falcon it almost completely vanishes (with only user context offering slight improvement).
Lighter bars are the results from our original experiment for comparison.

initial“spike” in the figure suggests that some of the most improved tokens were at the start of
tweets, often tokens part of @-mentions. After that, the average improvement stabilizes, then
slightly goes up towards the end of the tweets, where hashtags would often be located. Based
on these results it seemed plausible that @-mentions and hashtags were locations of greatest
uncertainty, where additional context helped model prediction the most.

We repeated our prompting experiments after removing @-mentions and hashtags from our
tweets. Assuming these were indeed one of the greatest sources of error, removing them would
make our tweets more predictable overall, and the effect of additional context on predictability less
strong. The results of our repeated experiments can be seen in Figure 8. Indeed, subjects became
more predictable on average, and the effect of context on predictability decreased (by ~ 20% for
random context, ~ 4% for peer context and ~ 7% for user context on Llama-2 70b). One peculiar
finding was that for Falcon additional context did not improve predictability the same way as
before. For example, the effect size of the user context dropped to only 0.4¢, which is significantly
less than the 2.1¢ from before. A possible explanation is that the only (useful) predictive signal
Falcon was able to pick up on was in the removed pieces of text. Another possibility is that it is
simply more sensitive to discontinuities inside the text than other models.

5 Limitations

Negative-log likelihood as a measure of uncertainty While negative log-likelihood is the most
popular measure of model uncertainty, there are certain limitations to using this metric. One is
that it is calculated exclusively on tokens contained in tweet T, and does not take into account
any improvements outside of that token (i.e. other tokens that are close to it in the embedding
space). Another issue is the sensitivity of this metric: to the prediction of the first token (see Fig. 7
and Appendix B.5) and to slight changes in prompting (how tweets were separated, for example).
Using low-frequency tokens as a separator between tweets (such as the eos token, which is usually

13



reserved for separating training documents) produced abnormally high NLLs, which is why we
decided to use more common tokens, such as space or newline for the prompting experiments.
Another important aspect is the length of input; NLL is commonly lower for longer pieces of
text. This is true here as well, and we show the relationship between average tweet length and
model uncertainty in Appendix B.2. While these points affect absolute numbers in our analysis,
it does not affect our main statements about the relative comparisons between different models
and contexts. As an example, our choice of model also had a considerable effect on the absolute
value of BPC (with GPT-2-XL scoring typically higher than Llama-2), however it did not affect the
relative relationship between the different settings.

Data contamination Furthermore, we cannot rule out the possibility that some tweets in our
corpus were part of the training dataset of the LLMs that we used. However, we believe the risk
and severity of data contamination to be limited. GPT-2 was trained on WebText with content up
to December 2017 Radford et al. (2019) (95% of our subjects’ tweets were authored after 2022),
Falcon was trained on RefinedWeb which is is built using all CommonCrawl dumps until the
2023-06 one Penedo et al. (2023) (CommonCrawl typically does not contain snapshots of Twitter
com (2024)) and the authors of Llama-2 claim to have “made an effort to remove data from certain
sites known to contain a high volume of personal information about private individuals.” Touvron
et al. (2023).

6 Discussion

We presented the results of an investigation using state-of-the-art large language models into the
predictability of online speech by analyzing posts on X (Twitter). As the basis of our study, we
collected posts from more than five thousand users’ timelines and their peers. We used a total of
6.25M tweets for our prompting experiments, plus an additional 10M for finetuning.

We found that it is surprisingly difficult to predict online speech. The majority of our users’
tweets are less predictable than tweets about financial news. Even with additional context,
prediction performs relatively poorly. Only our largest model with additional user context is able
to approximate the estimated information content of the English language. Further analysis on
what drives this unpredictability reveals that the source of greatest uncertainty are hashtags and
@-mentions. In other words, what improves prediction the most with additional context are basic
signals: specifically, guessing the correct hashtags and @-mentions. All in all, our findings suggest
that despite the impressive capabilities of large language models in other areas, state-of-the-art
models predict online speech rather poorly.

Another central question of our analysis was whether the predictive information inside peer
tweets is enough to match (or even surpass) those of the user’s own tweets, as suggested by
Bagrow et al. (2019). We believe that this is unlikely. Our results show that user context consistently
outperforms peer context in a manner that is robust to model choice and evaluation method.
Additional experiments suggest that whatever predictive information is inside the peer context,
can also be found in the user context.

Our findings may also inform work on privacy and other ethical issues on social networks. For
example, threats such as shadow profiling or impersonation on a global scale may not be as acute
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as some feared with state-of-the-art language models. However, these risks may still exist on a
case-by-case basis (we demonstrate individual variability in Figure 12 in the Appendix). Moreover,
there may be other conceivable harms that don’t map cleanly to questions of predictability.

7 Future Work

We presented results on the predictability of english speaking users’ online speech. This is
only the first step towards contextualizing what it means for individuals to live in a world of
transformers-based language models. It still remains to be answered how these results might
translate to different sub-communities. Extending our analysis to different sub-communities and
languages would be an interesting avenue for future work. Similarly, we welcome additional work
into the external validity of our results. It is unclear to what extent our findings would translate
to other social media platforms.

Finally, we find that additional research into the downstream effects of predictable speech on
privacy is necessary. One well known issue about LLMs is that they are known to memorize
personally identifiable information (PII) Lukas et al. (2023). We are happy to see a shift in recent
literature acknowledging that preventing data leakage is not equivalent to meaningful privacy
guarantees in the natural language context Brown et al. (2022).
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A Experimental Setup

A.1 Data collection
A.1.1 Sampling stage

We used the Twitter Firehose API to query a 1% sub-sample of real time tweet activity in early
2023 (from 20. January to 10. February). We used the following filter expression to query the API:

"sample:1 followers_count:0 -is:retweet lang:en’
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Where the options have following meaning:

¢ sample:1: Return a 1% sub-sample of the filtered tweets. (The specified number has to be
between 1-100 representing a % value.)

¢ followers_count:0: Return tweets made by users with at least o number of followers. This
is a dummy filter because sample/is/lang are not standalone filters (filters that can be used
on their own) and need additional standalone filters (like followers_count) to work.

e -is:retweet: Don’t return retweets.
* lang:en: Return English tweets.

This collection phase resulted in a pool of 10M tweets, with 5M unique authors. We sampled
our subjects from this pool of authors (N = 5102 sample). Strictly speaking, our sample will be
biased towards users that have 1) been more active during our initial collection period and 2)
are more active users in general. This was the closest we could get to a random sample with the
offered API endpoints. It is also follows Bagrow et al. (2019)’s method of randomly sampling users.
Again, following in their steps we dropped subjects that had scored high using the Bot-O-Meter
API. Bot-O-Meter uses classifies users on a scale from o-1 based on 200 of their tweets. See
Figure 9 for a distribution of these scores. We dropped users that had a score higher than o.5.
Additionally, we dropped users that had a high retweet ratio (more than 80% of their tweets
consisted of retweets). This is an additional measure to prevent bot accounts in our subject pool
(bots are known for frequently retweeting content Yang et al. (2020); Gilani et al. (2017)) as well as
a practical consideration since we only wanted to include non-retweets in our analysis.

A.1.2 Timeline collection stage

We used the Twitter API’s Timeline endpoint to query the subjects” most recent tweets. To get
tweets from around the same timeframe, we choose an end_time (which was the start of our
sampling stage, 20. January). Tweets made after end_time were not included. Per subject, we
collected a total of 500 tweets, half of which was reserved for evaluation, the other half served as
user context. From these tweets, we identified the top-15 most mentioned users (the user’s peers)
and collected 50 tweets from their timelines as well. These, as well as the user context tweets
were collected such that they were authored before the oldest evaluation tweet (t* in Figure 10).
From these, we selected the 250 most recent tweets. A simpler approach would have been to select
exactly % ~ 17 tweets per peer. However, not all peers had this many tweets on their timeline

before t*, hence our choice for collecting more tweets per peer than necessary.

In the end, we had queried the timelines of around ~9gok users, with 15M timeline tweets in our
database. We sampled from this pool of users and tweets for our social / temporal control. The
social control consists of tweets of 15 random users with % ~ 17 tweets each. We made sure that
the sampled user did not coincide with the subject itself / any of their peers. The temporal control
on the other hand contains tweets that were made around the same time as the tweets inside peer
control. Again, we made sure that the tweets” authors did not overlap with the peer pool or the
subject. Figure 10 illustrates all of our settings, while Figure 11 shows the time histogram of an
example dataset belonging to one of our subjects.
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Figure 10: Data creation protocol. We evaluate predictability on a set of evaluation tweets, and how it
changes depending on what context we provide.
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Figure 11: Time histogram of an example dataset of some subject 1. We illustrate 7,'2!, and how all context
tweets were written before the oldest tweet in 7,2''. The social control contains tweets from random users,
while the temporal control contains tweets that were authored around the same time as the peer tweets.

A.1.3 Preprocessing tweets

Before our experiments, we preprocessed our collected tweets by filtering out urls, deduplicated
spaces and fixed some special character encodings. We found that urls were not relevant in
analysing the predictability of (organic) online speech, while deduplication of spaces is a fairly
common preprocessing step in NLP. For our experiments described in Section 4.3, we further
tiltered out @-mentions and hashtags.

B Prompting

B.1 Individual variability

While globally there is a tendency where user context outperforms peer context, peer context
outperforms random context, etc., there is substantial variability on the individual level as
illustrated in Figure 12. In the highlighted blue example, random context improves predictability
more than the peer context.

B.2 Correlation with average tweet length

In Figure 13 we show the distribution of subjects’ tweet length in tokens. Most of the tweets have
between o and 100 tokens. We also present the relationship between model uncertainty and the
average tweet length of a given subject in Figure 14. NLL and average tweet length are correlated:
users with longer tweets are on average more predictable.

B.3 Hard to predict users gain more from additional context

In Figure 4 we have shown that if we rank users according to how predictable they are, there is
a high agreement across models wrt. this ranking. Now, with additional context, we analyze
how the change in predictability is influenced by this ranking (Figure 15). We find that with
additional context, improvement in predictability is larger for users who are already hard to
predict. Predictability improves on average by ~ 0.1 bits for every 1 bit increase in “difficulty to
predict”.
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Figure 12: Differences in predictability Ac! using the Llama-2 model. We picked 10 random users and plot
their predictability using different contexts (y axis). Comparing across contexts we get the difference in
predictability: A(u;)cl. While unpredictability goes down on average as we evaluate on more predictive
contexts, there can be individual level variance that does not necessarily always follow this trend.
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Figure 14: Users with longer tweets are more predictable. On the y-axis, we plot the average NLL required
to predict a user’s tweets (no context setting). The x axis shows the user’s average tweet length (in tokens).
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Figure 15: Hard to predict users get more predictable with additional context, but only slightly. On the
x-axis, we plot the average BPC required to predict a user’s tweets (no context setting), effectively sorting
them based on how predictable they are (easy vs. hard to predict). The y axis plots the relative improvement
(decrease in BPC) with additional user context.

B.4 Two control groups: social and temporal control

Bagrow et al. (2019) introduce two control groups in their experiment: a social and a temporal
control. Social control includes tweets from 15 random users. Temporal control on the other hand,
selects 250 tweets that were authored around the same time as the tweets from the peer context.
See Figure 10 for an illustration of both. The rugplot on the top of Figure 11 shows the same, but
on real data of a random subject. Figure 16 shows our main results including both controls, while
Figure 17 shows the corresponding effect sizes.

B.5 “Surprise effect” of first token

LLMs are known to have high negative log-likelihood on the first token of the input sequence.
This could artificially inflate model uncertainty in the no context setting. To test its effect on our
results, we omit predictions on the first token from our analysis. Figure 18 illustrates the results
of this experiment. Indeed, the gap between the no context and other context settings shrink
as expected. However the differences still remain significant and thus don’t change our main
findings.

B.6 Most improved token due to random context: @-mention

We were interested in which tokens benefited most after including random (i.e. social) context.
We selected tokens with >100 occurences, and ranked them based on how much their prediction
improved on average. Table 1 shows that the ‘@” token benefits the most across all three models,
indicating that @-mentions are locations of greatest improvement. See Table 2 for a full table on
top-10 most improved token predictions (with all possible contexts).
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Figure 16: Average bits per character (BPC) required to predict user tweets, with 95% confidence intervals.
Here both control settings are included: (i) past tweets from random users (social control, left) and (ii) past
tweets made around the same time as the peer tweets (temporal control, right). These results are consistent
with the ones presented in Fig. 1.
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Figure 17: Average effect size of c, relative to c¢; on user predictability. We look at the difference in
predictability for each user A% (1) = L§! — L%, where L is the average negative log-likelihood of user

u under context c. Plotted values are standardized mean differences (SMD) of Ag% Darker green means
greater improvement.
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Figure 18: The effect of taking the first token out of the analysis. Overall, the average BPC decreases
(predictability goes up), however the most significant drop is in the no context settings for GPT-2-XL and
Llama-2. This happens because frequently the NLL of the first token (with no token preceding it) is usually
quite high. Lighter bars are results from our original experiment.

GPT-2-XL Falcon Llama-2
social control

o @ @ _@

1 aG Brit _Hey

2 L GAmen __Ain

3 GARTICLE GNah __Happy
4 Gotij GBru __Wait

5 GoL GSame  __tf

6 GaG GDamn /@

7 Gal GWait  rach

8 Gar GDang __Okay
9 I GNope __Ton

Table 1: Top ten tokens whose predictability went up the most (on average) after including tweets from
random users as context (compared to no context). Notice how the @ sign is the token that got “bumped”
the most, suggesting that the additional random context helped with predicting @-mentions. (G is a special
symbol for the space character in the GPT-2-XL and Falcon tokenizers.)

26



eval/base_loss eval/rand_subjects_loss

_step train/ghoba

20k 40k 60k 80k 100k 120k 140k 20k 40k 60k 80k 100k 120k 140k

(a) Loss calculated on the 5% validation split (~ 0.5M (b) Loss calculated on the evaluation set of 100 subjects

tweets). (25k tweets). There is a lot more stochasticity, which in
part is due to the smaller sample size and a less diverse
pool of authors.

Figure 19: Loss curves of the pre-finetuning of GPT-2-XL on 10M tweets for 1 epoch. Validation loss
(negative log-likelihood) was calculated on a 5% split. To make sure that pre-finetuning also improved
subject predictability, we also selected a random subset (n = 100) of the 5k subjects. We used their
evaluation tweets to calculate the loss and since each |7,'3!| = 250, this means a total of 25000 tweets.

C Finetuning

C.1 Pre-finetuning

With a batch size of 8, it took 147279 global steps to go over the entire set of training tweets once.
In addition to the evaluation loss (NLL on the 5% validation split, which was checked periodically)
we also tracked the loss calculated on the combined evaluation set of 100 subjects (25000 tweets
in total) to make sure that the pre-finetuning improved prediction on our subjects as well. We
present a figure of the loss curves in Figure 19.
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